Dieter Martin und Alfons Weise1)

Cyansäureester, VIII²⁾

Umsetzung von Cyansäureestern mit Phosphorigsäureestern

Aus dem Institut für Organische Chemie der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof

(Eingegangen am 24. August 1965)

Trialkylphosphite bilden mit Cyansäure-arylestern in exothermer Reaktion ein Gemisch aus Nitrilen, Isonitrilen, Alkyl-aryl-äthern, Phosphorsäure-dialkylester-cyaniden und Phosphorsäure-dialkylester-arylestern. Die Natriumsalze der Dialkylphosphite liefern mit Cyansäureestern ausschließlich Phosphorsäuretriester. Die Reaktionen verlaufen als nucleophile Substitution am O- und C-Atom der Cyansäureester und anschließende Stabilisierung der Phosphonium-Zwischenstufen im Sinne einer Michaelis-Arbusow-Reaktion.

Die Reaktionsfähigkeit der Phosphorigsäureester wird durch die ausgeprägte Nucleophilie der dreiwertigen Phosphorverbindungen bestimmt. In besonderem Maße sind Phosphorigsäureester zu nucleophilen Substitutionen an Heteroatomen befähigt. So wird in *N*-Chlorverbindungen³, Sulfenylchloriden³) und Alkylhypochloriten⁴) das Chloratom durch Phosphorigsäureester nucleophil ersetzt und in Disulfiden⁵) ein Mercaptidrest vom Schwefel abgelöst. Eingehend ist die Umsetzung mit Thiocyansäureestern untersucht worden. Danach entstehen mit Dialkylphosphit-Anionen⁶) unter Freisetzung von Cyanid-Ionen und mit Trialkylphosphiten⁷⁻⁹) unter Abspaltung von Nitrilen Thiophosphorsäure-*O.O.S*-triester (1):

¹⁾ Teil der geplanten Dissertat. A. Weise, Humboldt-Univ. Berlin.

²⁾ VII. Mitteil.: D. Martin und A. Weise, Chem. Ber. 99, 317 (1966).

³⁾ K. Sasse in Methoden der organ. Chemie (Houben-Weyl), 4. Aufl., Bd. 12/2, S. 44, 81, Georg Thieme Verlag, Stuttgart 1964.

⁴⁾ K. A. Petrov und G. A. Sokolskii, J. allg. Chem. (russ.) 26, 3337 (1956), C. A. 51, 8028 (1957); D. B. Denney und R. R. DiLeone, J. Amer. chem. Soc. 84, 4737 (1962).

 ⁵⁾ K. Pilgram und F. Korte, Tetrahedron [London] 21, 203 (1965) und dort zit. Literatur.
⁶⁾ Farbenfabriken Bayer AG (Erf. G. Schrader) Dtsch. Bundes-Pat. 818 352, C. 1952, 3246;

Amer. Pat. 2640847, C. A. 48, 5206 (1954).
⁷⁾ Farbenfabrik Bayer AG (Erf. G. Schrader und W. Lorenz) Dtsch. Bundes-Pat. 926488, C. 1955, 8968.

⁸⁾ J. Michalski und J. Wieczorkowski, Roczniki Chem. **33**, 105 (1959), C. A. **53**, 15 956 (1959).

⁹⁾ W. A. Sheppard, J. org. Chemistry 26, 1460 (1961).

Nitroarylthiocyanate lenken die Umsetzung mit Trialkylphosphiten nur untergeordnet zu 1; sie liefern bevorzugt Alkyl-nitroaryl-sulfide und Phosphorsäuredialkylester-cyanide¹⁰.

Wir haben nun im Zusammenhang mit den nucleophilen Additionen¹¹⁾ der Cyansäure-alkyl-^{12,13)} und -arylester^{14,15)} deren Reaktionsfähigkeit gegenüber Phosphorigsäureestern untersucht^{*)}.

A. Umsetzung von Trialkylphosphiten mit Cyansäureestern

Cyansäure-arylester (2, R = Ar) reagieren bereits bei 0° exotherm mit Trialkylphosphiten (3). Mit Triphenylphosphit konnte keine Umsetzung erzwungen werden. Die günstigsten Bedingungen liegen vor, wenn 3 unter Benzolverdünnung so zu einer benzolischen Lösung von 2 getropft wird, daß sich eine Reaktionstemperatur von $50-60^{\circ}$ einstellt. Mit fortschreitender Umsetzung färbt sich das Gemisch dunkelbraun, wobei der charakteristische Isonitrilgeruch auftritt. Durch Destillation wurden fünf Fraktionen gewonnen (Schema 1):

Schema 1

Fraktion 1 ließ sich nur dann gut abtrennen, wenn 2 und 3 gleichzeitig und ohne Lösungsmittel in einen auf 50° gehaltenen Kolben getropft wurden. Im Wasserstrahlvakuum wurde das Nitril/Isonitril-Gemisch noch während der Vereinigung der Reaktionspartner über eine Kühlfalle (-70°) abgezogen und gaschromatographisch identifiziert.

Die Ausbeute an Fraktion 1 betrug maximal 39% (Isonitrilgehalt 10%). Unumgesetztes 3 wurde in Mengen zwischen 18 und 24% zurückgewonnen. Die Äthermenge in Fraktion 3 konnte bei der Umsetzung mit 2a, 2c und 2d präparativ, bei 2b wegen der Überschneidung der Siedebereiche nur gaschromatographisch bestimmt werden und betrug zwischen 18 und 40%. Die Phosphorsäure-dialkylester-cyanide (7) ließen

^{*)} Anm. b. d. Korr. (18. 1. 1966): Am 4. 10. 1965 teilte uns Herr Dr. K. Pilgram, Shell Grundlagenforschungs-Gesellschaft m. b. H., mit, daß er ähnliche Untersuchungen durchgeführt hat.

¹⁰⁾ K. Pilgram und F. Korte, Tetrahedron [London] 20, 177 (1964).

¹¹⁾ Übersicht über die bisherigen Reaktionen s. D. Martin und S. Rackow, Chem. Ber. 98, 3662 (1965).

¹²⁾ D. Martin und W. Mucke, Chem. Ber. 98, 2059 (1965).

¹³⁾ K. A. Jensen, M. Due und A. Holm, Acta chem. scand. 19, 438 (1965).

¹⁴⁾ D. Martin, Chem. Ber. 97, 2689 (1964).

¹⁵⁾ E. Grigat und R. Pütter, Chem. Ber. 97, 3012 (1964).

sich weder präparativ noch gaschromatographisch, aber eindeutig durch IR-Spektrenvergleich mit authent. Material¹⁶ identifizieren. Offenbar erleiden sie bei der Destillation und unter den Bedingungen der Gaschromatographie starke Zersetzungen, da auch das authent. Material nur ein uncharakteristisches verwaschenes Chromatogramm zeigt. Fraktion 4 enthielt Phosphorsäure-dialkylester-arylester (8) in Ausbeuten zwischen 32 und 62%. Die Rückstandsfraktionen 5 waren braune, zähe Harze (17 bis 22%), deren Stickstoffgehalt auf Zersetzungsprodukte der Isonitrile und Phosphorsäure-dialkylester-cyanide hindeutet.

Wegen der Gefahr einer Isomerisierung der Cyansäure-alkylester (2, R = Al-kyl)^{12, 13)} darf bei ihrer Umsetzung mit 3 die Reaktionstemperatur 40° nicht übersteigen. Die Reaktion ist überdies schwächer exotherm als bei den Cyansäure-arylestern und verläuft weniger übersichtlich. Durch Fraktionierung wurden zwischen 16 und 30% unumgesetztes 3 zurückgewonnen. Die Phosphorsäure-trialkylester ließen sich durchschnittlich in 32-proz. Ausbeute isolieren und wurden durch Elementaranalyse und IR-Spektrenvergleich mit authent. Material charakterisiert. Die höhersiedenden Fraktionen (15%) enthielten Stickstoff, waren uneinheitlich und zeigten bei erneuter Destillation starke Zersetzungen. Die Umsetzungsrückstände betrugen etwa 10%.

B. Umsetzung von Dialkylphosphiten mit Cyansäureestern

Wesentlich einheitlicher verläuft die Umsetzung der Alkalisalze von Dialkylphosphiten (9) mit Cyansäureestern. Es wurden ausschließlich Phosphorsäuretriester 8 isoliert:

$$\begin{array}{c} \operatorname{RO}^{2} \widehat{C} \stackrel{=}{=} \operatorname{N} \\ 2 \\ (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O \\ \end{array} \xrightarrow{} (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O + \operatorname{CN}^{\ominus} \\ 9 \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O + \operatorname{CN}^{\ominus} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O + \operatorname{CN}^{\ominus} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O + \operatorname{CN}^{\ominus} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ (\operatorname{R}^{'} \operatorname{O})_{2} \widehat{P} \stackrel{=}{\to} O + \operatorname{CN}^{\ominus} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ \operatorname{RO} \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \\ \end{array} \xrightarrow{} \begin{array}{c} \operatorname{RO} \end{array}$$

C. Reaktionsmechanismus

Alle bisher bekannt gewordenen Additionen an Cyansäureester (2) verlaufen über den Angriff eines Nucleophils am C-Atom der Cyangruppe¹¹⁾. Die glatte Bildung von 8 bei der Umsetzung der Cyansäureester mit Dialkylphosphit-Anionen lehrt dagegen,

¹⁶⁾ B. C. Saunders, G. J. Stacey, F. Wild und I. G. E. Wilding, J. chem. Soc. [London] 1948, 699; M. Lj. Mesarović und J. S. Čirić, Ber. chem. Ges. Belgrad 23/24, 427 (1959), C. 1962, 15930.

daß die Cyansäureester auch einem nucleophilen Angriff am Sauerstoffatom zugänglich sind. Das Auftreten der im Schema 1 angeführten Produkte läßt sich nun zwanglos verstehen, wenn man annimmt, daß das Trialkylphosphit in zwei nebeneinander ablaufenden Mechanismen gleichzeitig nucleophil am Sauerstoff (Verlauf A) und C-Atom (Verlauf B) der Cyangruppe angreift. Die vermutlichen Zwischenprodukte 10 und 12 mit Phosphoniumstruktur zerfallen in einer Michaelis-Arbusow-Reaktion¹⁷⁾ unter Abstoßen eines Alkyl-Kations. Dieses alkyliert das ambidente Cyanid-Anion zum Nitril-Isonitril-Gemisch (4 + 5) bzw. das Phenolat-Ion zum Äther 6.

Über Phenolat-Abspaltungen aus Cyansäure-arylestern unter Nitrilgruppenübertragung, analog Reaktion B, wobei Zwischenstufen mit Imidsäure-arylester-Struktur wie 11 durchlaufen werden, haben wir in einer früheren Mitteilung¹¹⁾ ausführlich berichtet.

Sind die Vorstellungen über zwei voneinander unabhängige Mechanismen richtig, dann sollte sich ihr Verhältnis durch Variation der Substituenten in 2 ändern. Das Trialkylphosphit 3 greift mit seinem freien Elektronenpaar 2 an der C-O-Bindung als der Stelle geringster Elektronendichte an. Erhöhen elektronenanziehende Substituenten in R das Elektronendefizit am Kohlenstoffatom, dann sollte bevorzugt C-Angriff (Verlauf B) stattfinden, während elektronenabgebende Substituenten im gleichen Maße, wie sie den C-Angriff einschränken, der Substitution am O-Atom (Verlauf A) eine größere Chance einräumen. An den Ausbeuten von 6 und 8 muß sich diese Überlegung prüfen lassen (s. Tab. 1).

Tab. 1. Ausbeuten an Äthern 6 und Phosphorsäureestern 8 bei der Umsetzung von Triäthylphosphit (3a) mit Cyansäure-arylestern (2)

2 R	% Ausb. an 6 Angriff am C-Atom	% Ausb. an 8 Angriff am O-Atom
$(p)H_3C-OC_6H_4$	22	52
C ₆ H ₅	31	51
$(p)Cl - C_6H_4$	28	49
$(p)O_2N-C_6H_4$	40	32

17) B. A. Arbusow, Pure appl. Chem. 9, 307 (1964).

Die Ausbeuten beziehen sich auf 100-proz. Umsetzungen von 2 und stellen Mittelwerte aus jeweils 4 bis 5 Versuchen dar; die Abweichungen in jeder Versuchsserie waren nicht größer als $\pm 5\%$. Ohne diese qualitative Aussage überzubewerten, läßt der Gang der Ausbeuten in Tab. 1 die Richtigkeit der Vorstellung erkennen: Bevorzugter C-Angriff in 2 bei elektronenanziehenden und verringerter C-Angriff durch elektronenabgebende Substituenten.

Angaben über den Mechanismus der Trialkylphosphit-Umsetzung mit Thiocyansäureestern liegen auch von den Bearbeitern dieser Reaktion vor. *Michalski*⁸) und *Sheppard*⁹) erklären die Bildung der Thiophosphorsäure-O.O.S-triester (1) über einen Angriff des Trialkylphosphits am S-Atom der Thiocyanate und anschließende Michaelis-Arbusow-Reaktion. Isonitril wurde dabei nicht beobachtet. *Pilgram* und *Korte*¹⁰) deuten die Entstehung der Alkyl-nitroaryl-sulfide über einen C-Angriff des Trialkylphosphits an die Nitroarylthiocyanate, räumen aber später ein⁵), daß die "Thioäther ihre Entstehung teilweise der thermischen Labilität intermediär gebildeter Thiophosphate verdanken können":

 $\begin{array}{ccc} & & & & \\ & \uparrow & \\ Ar-S-P(OR)_2 & & & \\ & & \\ & & \\ \end{array} \rightarrow & ArSR + 1/n \ (ROPO_2)_n \end{array}$

Diese Reaktion läuft jedoch erst oberhalb 115° ab, wie durch soeben mitgeteilte kinetische Befunde¹⁸) gezeigt wurde. Unterhalb dieser Temperaturschwelle gebildete Thioäther entstehen dagegen durch einen direkten Angriff des Trialkylphosphits am C-Atom der Arylthiocyanate.

Die Bildung des Äthers 6 durch thermischen Zerfall der Phosphorsäuretriester ist in unserem Falle unwahrscheinlich, da diese unter den angewandten Reaktionsbedingungen stabil sind und 6 außerdem gaschromatographisch schon im Rohansatz vor der Destillation nachgewiesen werden kann.

Das Auftreten von Isonitril bei der Umsetzung von Trialkylphosphiten mit Nitroarylthiocyanaten erklären *Pilgram* und *Korte*¹⁰ durch eine Sekundärreaktion des Phosphorsäuredialkylester-cyanids mit überschüssigem Trialkylphosphit:

$$\begin{array}{ccc} O & O \\ (RO)_2 PCN + (RO)_3 P & \longrightarrow & RNC + (RO)_2 P - P(OR)_2 \\ \hline 7 & 3 \end{array}$$

Es läßt sich jedoch zeigen, daß selbst bei längerem Erhitzen von 7 und 3 kein Isonitrilgeruch wahrzunehmen ist. Die Isonitrilbildung als Alkylierung des ambidenten Cyanid-lons zu deuten, dürfte daher wahrscheinlicher sein.

Das vorliegende Gesamtmaterial läßt sich zusammenfassend so interpretieren, daß mit wachsender Elektrophilie des C-Atoms in steigendem Maße C-Angriff des Trialkylphosphits stattfindet:

 $\begin{array}{ll} R-S-CN^{7-9)} < HalAr-S-CN^{18)} \sim O_2NAr-S-CN^{10)} \sim R-O-CN < Halogen-CN^{16)} \\ nur Angriff & Angriff sowohl am C- als am S(O)-Atom & nur Angriff \\ am S-Atom & & am C-Atom \end{array}$

Herrn Prof. Dr. A. Rieche danken wir für die Förderung dieser Untersuchung, Herrn Dr. H. Teichmann für wertvolle Hinweise. Die Gaschromatogramme verdanken wir Herrn Dipl.-Chem. D. Habisch und die IR-Spektren Herrn Dr. P. Reich.

¹⁸⁾ K. Pilgram und D. D. Phillips, J. org. Chemistry 30, 2388 (1965).

Beschreibung der Versuche

(unter Mitarbeit von K. Nadolski)

1. Umsetzung von Cyansäure-arylestern (2) mit Trialkylphosphiten (3)

Allgemeine Vorschrift: Zu einer Lösung von 0.10 Mol Cyansäure-arylester in 35 ccm absol. Benzol wird unter Rühren 0.10 Mol Trialkylphosphit, verdünnt mit 15 ccm absol. Benzol, so zugetropft, daß eine Reaktionstemperatur von 50-60° aufrecht erhalten wird (etwa 1 Stde.). Die Lösung färbt sich allmählich tief dunkelbraun und zeigt den charakteristischen Isonitril-Geruch. Nach weiteren 30 Min. Rühten bei $50-60^{\circ}$ wird unter Stickstoffschutz das Lösungsmittel/Nitril/Isonitril-Gemisch über eine 20-cm-Dornenkolonne i. Wasserstrahlvak. in eine auf -40° gekühlte Vorlage abgezogen (Frakt. 1). Anschließend wird das unumgesetzte Trialkylphosphit abdestilliert (Frakt. 2) und danach ohne Kolonne an der Ölpumpe unter N₂ weiterdestilliert. Als 3. Frakt. wird der Alkyl-aryläther (6) und als 4. Frakt. der Phosphorsäure-dialkylester-arylester (8) abgetrennt (s. Tab. 2). Frakt. 1 riecht deutlich nach lsonitril und färbt sich allmählich braun. Frakt. 2 wurde durch Brechungsindex, Adduktbildung mit CuCl¹⁹⁾ und leichte saure Hydrolyse als unumgesetztes 3 identifiziert. Frakt. 3 behandelte man zur Trennung von mitgeschlepptem 3 und Phosphorsäure-diäthylestercyanid (7) etwa 1 Stde. mit 2n HCl, isolierte 6 durch Ausäthern und identifizierte es mit authent. Material. Frakt. 4 wurde erneut destilliert und durch Elementaranalyse charakterisiert. Die in Tab. 2 angegebenen Ausbeuten sind Mittelwerte aus jeweils 4 bis 5 Versuchen und auf etwa \pm 5% genau.

Die Isonitril/Nitril-Ausbeute wurde bei Vers. 1 und 5 (Tab. 2) nach den Angaben auf S. 977 gaschromatographisch (Gaschromatograph Giede, Trennsäule 2 m, 20% Apiezon L, Raumtemperatur bzw. 90°, 63 ccm H₂/Min.) und die Ätherausb. bei Vers. 2 ebenfalls gaschromatographisch bestimmt (Gaschromatograph Giede, Trennsäule 2 m, Apiezon M, Temperatur 100 bzw. 140°, 73 ccm H₂/Min.).

In den Verss. 1 und 5 wurden durch erneutes mehrmaliges Destillieren der mittleren Fraktionen stickstoffhaltige Fraktionen mit Sdp.₁₅ 80-92° und Sdp.₁₅ 110-120° abgetrennt, in denen durch IR-Spektren-Vergleich mit authent. Material¹⁶) die *Phosphorsäure-dialkylester*cyanide 7 nachgewiesen wurden: $v_{C \equiv N}$ 2218, $v_{P=0}$ 1252/cm.

2. Umsetzung von Cyansäure-alkylestern mit Trialkylphosphiten 3

a) Phosphorsäure-triäthylester (8, $R=R'=C_2H_5$): Zu einer Lösung von 7.10 g (0.10 Mol) Äthyleyanat in 30-50 ccm absol. Äther oder Benzol, hergestellt durch Thermolyse von 14.5 g (0.11 Mol) 5-Äthoxy-1.2.3.4-thiatriazol¹²⁾, tropft man unter Rühren 16.6 g (0.10 Mol) Triäthylphosphit so zu, daß die Temp. der Mischung sich ohne äußere Kühlung bei 40° hält (ca. 1¹/₂ Stdn.). Man läßt noch 1-2 Stdn. im Wasserbad von 40° nachrühren und destilliert i. Wasserstrahlvak., wenn der Äthylcyanatgeruch verschwunden ist. Nach Entfernen des Lösungsmittels gehen bei 50-60°/12 Torr durchschnittlich 5.0 g (30% der eingesetzten Menge) Triäthylphosphit über und anschließend bei 95-102°/12 Torr 5.6 g (31%) Phosphorsäure-triäthylpester²⁰; nach erneuter Destillation Sdp.₁₂ 99-100°.

C₆H₁₅O₄P (182.2) Ber. C 39.55 H 8.30 P 17.00 Gef. C 39.84 H 8.12 P 17.00

Die darauf bei $110-210^{\circ}/12$ Torr siedende und durchschnittlich mit 15% Ausb. (bez. auf die Gesamtmenge der eingesetzen Produkte) anfallende Fraktion ist nicht einheitlich. Sie enthält noch etwas Triäthylphosphat und nicht identifizierte, nur unter Zers. siedende stickstoffhaltige Substanzen. 2.1-2.4 g (10-11% der Ansatzmengen) bleiben als nichtdestillierbarer dunkelbrauner, harziger Rückstand übrig.

^{19) 1.} c. 3), S. 78.

²⁰⁾ C. R. Noller und G. R. Dutton, J. Amer. chem. Soc. 55, 424 (1933).

			Tab. 2.	Umsetzung vor	ı Cyansäure-ar	ylestern	(2) mit Trialky	lqsohqi	niten	(3)	
Vel	rs 2	6	Isonitril-	(R'O) ₃ P (3)	R-O-R	(9) ,		Ð	(O)2	P-OR (8)	Rück- stand
ž	R	R'	Geruch	redest. (%)	Sdp./Torr	Ausb.	Sdp./Torr	Ausb. (%)	Lit.	Summenformel (MolGew.) Analysen	(%)
-	(<i>p</i>)CH ₃ O-C ₆ H ₄	C ₂ H ₅	stark Ausb. 4+5:39%	18 Sdp. ₁₅ 50 – 60°	52—57°/0.1 Schmp. 36—37°	22	125—130°/0.1	52	21)	C ₁₁ H ₁₇ O5P (260.2) Ber. P 11.90 Gef. P 11.85	21
7	C ₆ H ₅	C ₂ H ₅	stark	23	I	31	92—96°/0.1	51	23)	C ₁₀ H ₁₅ O ₄ P (230.2) Ber. C 52.17 H 6.57 P 13.45 Gef. C 51.68 H 6.24 P 13.30	20
ŝ	$(p)Cl-C_6H_4$	C ₂ H ₅	schwach	22	4050°/0.1	28	102108°/0.1	49	24)	C ₁₀ H ₁₄ ClO ₄ P (264.7) Ber. C 45.41 H 5.32 P 11.70 Gef. C 45.15 H 5.17 P 11.78	22
4	$(p)0_2N - C_6H_4$	C ₂ H ₅	schwach	24	90—105°/0.1 Schmp. 57—58°	40	137—143°/0.1	32	21) 25)	C ₁₀ H ₁₄ NO ₆ P (275.2) Ber. P 11.26 Gef. P 11.33	20
ŝ	C ₆ H ₅	n-C4H9	stark Ausb. 4+5:20%	21 Sdp. ₁₆ 124—136°	85—95°/9	18	120125°/0.1	62	26)	C ₁₄ H ₂₃ O ₄ P (286.3) Ber. C 58.73 H 8.10 P 10.82 Gef. C 58.43 H 8.12 P 11.00	17
21) 23) 24)	V. V. Katyshkina G. W. Kenner und A. Morel, C. R. h G. M. Kosolanoff	und M. Y N. R. W. ebd. Séan Organon	a. Kraft, J. a illiams, J. ch. ces Acad. Sc hosnhorus, C	ullg. Chem. (rus em. Soc. [Lond ii. 127 , 1023 (18 Compounds. S.	s.) 26 , 3060 (19 on] 1955 , 522. 398). 264. Verlag J	356), C.	A. 51 , 8028 (15 ilev & Sons, Ne	157). w Yorl	r Loi	don 1950.	
25) 26)	Farbenfabriken B H. D. Orloff, C. J.	ayer AG Worrel u	(Erf. <i>G. Sch</i> md <i>F. X. Mc</i>	rader) Dtsch. H arkley, J. Amer	3undes-Pat. 81 ⁴ . chem. Soc. 80	4 152, С , 727 (1	. 1952 , 600. 958).				

Beim Arbeiten in Benzol bleibt ein Teil des Thermolyse-Schwefels¹²) gelöst und setzt sich mit dem Triäthylphosphit zum Thiophosphorsäure-0.0.0-triäthylester um, der dann im Vorlauf der Triäthylphosphat-Fraktion erscheint.

b) *Phosphorsäure-tri-n-butylester*: Wie unter a) beschrieben, werden 15.0 g (152 mMol) *n-Butyleyanat* und 38.0 g (153 mMol) *Tri-n-butylphosphit* umgesetzt. Man erhält durchschnittlich 13.0 g (32%) *Tri-n-butylphosphat*²⁰) vom Sdp.₁₃ 158-159°.

ca. 6.0 g (16%) Tri-n-butylphosphit werden zurückgewonnen und als Rückstand verbleiben 11-12 g (23-25%) unter Zers. höhersiedende Bestandteile und harzige, stickstoffhaltige Rückstände.

3. Umsetzung von Cyansäureestern (2) mit Na-Dialkylphosphiten (9)

Allgemeine Vorschrift: 0.10 g-Atom Na werden in siedendem Toluol durch stürmisches Rühren gepulvert und nach dem Abkühlen mit 0.10 Mol *Dialkylphosphit* versetzt. Die Temperatur darf dabei 40° nicht übersteigen. Nach 1–2 Stdn. ist eine klare Lösung entstanden, zu der unter Eiskühlung 0.1 Mol *Cyansäureester*, verdünnt mit Toluol, getropft wird. Man läßt 2 Stdn. bei Raumtemperatur nachrühren, versetzt mit 1–2 ccm Wasser, saugt das abgeschiedene *Natriumcyanid* ab, trocknet die Toluolphase mit Na₂SO₄ und fraktioniert i. Vak. Sdpp. und Ausbb. s. Tab. 3.

Bei der Umsetzung von $\ddot{A}thyl$ - und *n-Butylcyanat* wurde die Thermolyselösung der entsprechenden Thiatriazole¹²⁾ in Toluol ohne weitere Reinigung verwendet.

2	9 $(\mathbf{R}'\mathbf{O})_2\mathbf{P} - \mathbf{OR}$ (8)					
R	R′	Sdp./Torr	Ausb. (%)	Lit.	Summenformel (MolGew.)	Analysen P
C ₂ H ₅	C ₂ H ₅	99-100°/12	53	20) 27)	C ₆ H ₁₅ O ₄ P (182.2)	Ber. 17.00 Gef. 16.78
n-C4H9	C ₂ H ₅	130-135°/10	38	28)	C ₈ H ₁₉ O ₄ P (210.2)	Ber. 14.74 Gef. 14.90
C ₆ H ₅	C_2H_5	158°/12	80	23) 22)	C ₁₀ H ₁₅ O ₄ P (230.2)	Ber. 13.45 Gef. 13.53
C ₆ H4	n-C4H9	125°/0.1	72	26)	C ₁₄ H ₂₃ O ₄ P (286.3)	Ber. 10.82 Gef. 10.76
$(p)H_3C-C_6H_5$	C_2H_5	172-173°/12	83	22)	C ₁₁ H ₁₇ O ₄ P (244.2)	Ber. 12.68 Gef. 12.59

Tab. 3. Phosphorsäure-triester (8) aus Cyansäureestern (2) und Dialkylphosphiten (9)

²⁷⁾ L. Keay und E. M. Crook, J. chem. Soc. [London] 1961, 710.

²⁸⁾ G. M. Steinberg, J. org. Chemistry 15, 637 (1950).

[414/65]